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~ ON THE FORCES ACTING BETWEEN ATOMS AND IONS AND
THE PHYSICAL PROPERTIES OF MATTER IN BULK

By J. A. WASASTJERNA

(Communicated by W. L. Bragg, F.R.S.—Received 9 September 1937T)
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1. INTRODUCTION
We consider a system, consisting of two atoms or ions, situated at a given distance,
R, from each other. Such a system is characterized by a certain potential energy
F(R), denoting the work required to decrease the interval between the two atoms or
P B ions from co to R. The question of this potential energy has been the subject of
S . . . . . . ,
_ numerous theoretical investigations, commencing with HEITLER’s and LoNDoON’s well-
;5 S known papers (HEITLER and LoNDON 1927 ; LONDON 1928 4, 4) on the reciprocal action
OH of two atoms of hydrogen. On the other hand, we possess no further empirical know-
4= ledge concerning this potential energy F. The present paper is an attempt to analyse,
RO by the aid of accessible experimental data, the question of the dependence of energy
anl@ . . . .
= on the interatomic distance for atoms and ions with closed shells.

Attempts have been made to find reasonable expressions for the forces acting
between the ions in crystal lattices, by the aid of values experimentally determined
for density, elastic constants and compressibility of crystals. However, these attempts
have not been very successful, this being due to the fact that the above-mentioned
properties are determined by the first and second derivatives of the potential function
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106 J. A. WASASTJERNA

for a single value R =R, (WASASTJERNA 1935 d), whereas the general course of the
function F(R) remains unknown. A potential energy of the rather arbitrarily chosen
form hR-", where b and 7 are two constants, has generally been added to the potential
energy of the electrostatic force. Later investigations by LENNARD-JoNES and TAYLOR
(1925) and the present author (WASASTJERNA 1932 d) are definitely in favour of the
conception that the potential energy of the repulsive force can be represented by an
inverse power law only over a very small range of R, and outside this range the
character of the function must be modified. A few years ago Born and MAYER (1932)
also, in an interesting paper on compressibility, replaced the inverse power by an
exponential function. Its introduction was suggested by the exponential falling off
of the wave function at large distances, and SLATER’s and KiRkwooD’s calculations of
the repulsive force between two helium atoms. The present author has shown
(WASASTJERNA 1932 d) that an exponential falling off of the repulsive force can be
deduced from experimental facts. If one desires empirically to attain a more thorough
knowledge of the mutual potential energy of atoms and ions, the problem must,
however, be attacked on a much broader front than hitherto has been the case.

2. THE GENERAL PROPERTIES OF THE POTENTIAL FUNCTIONS

We consider a lattice, consisting of an equal number of positive ions : and negative
ions k. The potential energy of a gram-molecule may be denoted as ¥ (R). The
electrostatic contribution to the potential energy of the lattice is indicated by the
expression — Ncz22R~!, where N is AvoGADRO’s number, ¢ is MADELUNG’s constant,
which depends on the structure of the lattice, z the ionic charge, expressed in ele-
mentary units, and ¢ the charge of an electron. R is the distance between nearest
neighbours in the lattice. At equilibrium R = R;. As the product ¢z? often occurs
later, we write ¢z? = C. The electrostatic contribution to the potential energy of the
lattice is thus given by the expression — NCe?R-'. We define a function y“®(R) by
subtracting from the potential energy ®'*(R) the electrostatic potential energy

according to formula

2
G4k (R) = ,«Ng" YR (R). (2:1)

We call the function y'*(R) the total potential energy of the repulsive force. We
shall show that the forces corresponding to the potential energy x'*(R) act only
between immediate neighbours in the lattice, or at least that such forces between other
ions are negligible. As all these neighbours are assumed to be geometrically equi-
valent, our assertion implies that the potential energy y'*(R) may be written

X9 (R) = Nqg 0 (R), (2

where ¢ denotes the mutual potential energy of the repulsive force between two
neighbouring ions with opposite charges. The function ¢ may depend both on the
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ON THE FORCES ACTING BETWEEN ATOMS 107

ion pair (4, £) and on the co-ordination number ¢=the number of the nearest
neighbours. In previous papers (WASASTJERNA 1935 b, ¢) the present author has shown
that density, compressibility, elastic constants and the frequencies and amplitudes of
the infra-red vibrations depend solely on the derivatives ¢'(R,) and ¢"(R,), provided
that ¢ has the physical significance of mutual potential energy of two neighbours with
opposite charges and that the repulsive forces act only between nearest neighbours in
the lattice. This makes it possible to calculate the elastic constants, also the fre-
quencies and amplitudes of the vibrations from density and compressibility, without
knowledge of the analytical form of function ¢(R). Calculated and observed values of
these quantities show good agreement. Further, it was shown (WASASTJERNA 1935d)
that if the sums appearing in the theory of lattices are extended over the whole of
the lattice instead of over the nearest neighbours only, an attractive force between
geometrically equivalent ions must be added to obtain agreement between calculated
and observed data for the elastic constants and the characteristic frequencies of the
infra-red vibrations. Such an attractive force can hardly be accepted (LENNARD-
Jongs and TAYLOR 1925) ; we can therefore conclude that the repulsive forces act only
between nearest neighbours in the lattice, or at least that such forces between other
ions are negligible.

It seems to be evident that the attractive force, acting between geometrically
equivalent ions, which has earlier (Born and Bropy 1922; BorN and BorRMANN 1920;
HeckMANN 1924) been deduced from density and elastic properties, is only apparent
(WAsASTJERNA 1935 d). About one-third of this attraction appears in consequence of the
sums appearing in the lattice theory, having been extended over the whole of the
lattice, instead of over the nearest neighbours only. The remaining two-thirds of the
assumed attraction appear as a consequence of the values for the coefficient of com-
pressibility and the elastic constants, determined at room temperature, having been
used in formulae, which, according to their derivation, are strictly valid at the absolute
zero point only.

Further, the potential energy of two neighbouring ions is practically independent
of ¢. This can be shown as follows: If ¢ is independent of ¢, equation (2-2) becomes

X(ik) (R) — Nq¢(ik) (R). (23)

‘Within a limited range of R, ¢**¥(R) can be replaced by a function fairly arbitrarily
chosen as to form, e.g. bR~", where b and n are two parameters. These parameters
may be calculated for instance from the density and compressibility. The condition of
equilibrium is

(R)
JR

dBR(R)  NCe?
= R2 +

g
dR Ny

0, (2:4)
and leads to a range of equilibrium values of R, according to the values of C and the
co-ordination number ¢, that is '

Ry — R{P(C, q). (2:5)
14-2
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108 J. A. WASASTJERNA

After b and n have been determined for a given instance (C,, ¢,), we find that, accord-
ing to (2-5), the interatomic interval R, can be calculated for other cases (C s+ C,
q+#q,). ZACHARIASSEN (1931) has shown that formula (2-5), derived from the condition
of equilibrium (2-4), correctly represents the empirically known dependence of the
atomic interval on the lattice structure (C, ¢). The simple additivity expressed by
formula (2-3) can thus be regarded as assured, at least when looked upon as an
expression for a permissible approximation.
From (2-4) the value of the interatomic distance R, is given by

L (ggye(? 9 (R ))RzROMZ_;‘.

Experience shows that the lattice interval R{i*’ is equal to the sum of two constants
r$?(C, q) and r{®(C, q), characteristic of the two ions ¢ and ¢. These constants are
usually called “ionic radii” for short. The ionic radii, however, depend on the
lattice type, thus on C and ¢. This question has been investigated by GoLpscHMIDT
(1932), who found that the relative alterations of the interatomic distance R{* at the
transition from one lattice type 4 to another one B, are practically identical. These
two empirical laws may be summarized in the formula

Ry — (p0+9) 8(C, ), (27)

where p@ and p'*¥ are two constants, characteristic of the ions in question, and g a
function, which depends only on C and ¢. Let

(2:6)

. RGb
xR — p(i) m R (28)
h | . _R® (C, q) (2-9)
then Xy P B 8% 9)s
independent of (i, £). Also combining (2:6) and (2:7)
P pth) (a¢(z‘k)) _Cc 510
¢* 0 o 984Gy q)° (2:10)

independent of (4, £). But x{® is independent of (i, k) by (29), so for all (z, k) we can

Write (2) ‘ (B) 9 (ik)
1 _I_ 2 ,
. ] (211)

where f/(x) is the same function for all (7, k). Thus

(i) k) R »
LA +'0 ¢(Zk)( ) =Ji(x )‘*‘A(Zk)_fl( (z)_|_p(k))+/1(2k) (2-12)

and PR = s (AR} = o G ) (219)

p(z)+p
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ON THE FORCES ACTING BETWEEN ATOMS 109

As the arguments which lead to formula (2-11) apply only to the range of x covered by
the ionic lattices, an integration constant 4; must be introduced in (2:12) and (2-13).
The significance of this constant will be explained later.

Function ¢®(R) has the physical significance of the potential energy arising from
the reciprocal action of the electronic systems of the two ions ¢ and k. The general
form of expression (2:13) is of decisive importance to the problems we investigate.
The potential energy of the lattice can be written

) Ne?
Plik) — S

The condition of equilibrium —;R@"'k’ (R)=0

[~ St g +agm)). (214

leads to an interatomic distance R, = (p'? +p'*) x,, which is given by

oy C
Jilko) = =2 (2:15)
It has been shown empirically (WASASTJERNA 1932¢) that a simple relation exisfs
between the atomic and ionic refractivities and the apparent radii for all atoms and
ions of rare gas type. As the refractivity depends on the radial charge density

(KIRkwOOD 1932; WASASTJERNA 19324)
D = 4mr?Xy?,

where 7 is the distance from the centre of the atom and where SCHRODINGER’s charac-
teristic functions have been denoted by ¢, also the repulsive force

(ik) 2
' (Ro) = (W)R#?o = (p(i)”’“_i—/;ﬁc)“)“zf 1 (%)

must thus depend on the radial charge densities D and D'*. Seeing that the para-
meters p‘ and p'® contained in function ¢’(R,) are independent of each other and
characterize the two ions ¢ and £, the possibility that the function f| has the same
general form for all atoms and ions of rare gas type is only conceivable if the electron
distribution can be satisfactorily expressed by a general analytical function containing
only one parameter dependent on the structure of the atom or ion under considera-
tion, which parameter must have the character of a length

D@ (r) = D(p(?, 7). (2-16)

As the relation expressed in (2-16) can only appear in the outermost, analogously
built, parts of the atoms and ions under consideration, we may draw the further
conclusion that both the refractivity and the repulsive force are determined by the
radial density in the outermost electronic shells of the atoms and ions.
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110 J. A. WASASTJERNA

Tromas (1927), FErRMI (1928) and HARTREE (1928) have developed methods of
calculating the distribution of electrons in atoms with non-Coulomb central fields.
HARTREE’S method, which has become generally known as the method of the self-
consistent field, has proved applicable and has led to extremely valuable results.
The electron distribution D in the outermost shell, as calculated according to
HARTREE, can be approximately expressed in a form compatible with condition (2-16)
(WASASTJERNA 19320):

D@(r) =1 B(E), (217)

P’
where { = 7/p{¥ and where p{?’ = (frD‘“a’r/fD‘“a’r) .

Further, any theory of polarizability (KIRkwoob 1932; WASASTJERNA 19324, ¢) seems
to give a refractivity /, which is nearly proportional to p§. We may thus write

1= ypi, - (218)

where the proportionality factor y has the character of a reciprocal length. The
numerical value of y can be determined by calculating for different ions the values
po, which inserted into (2-17) give electron distribution curves, which should as near
as possible agree with the corresponding curves calculated by HARTREE, and by then
comparing these values p, with the refractivities / for the same ions. Good agreement
with HARTREE’S curves is obtained (WASASTJERNA 19326) with a numerical value
y = 10, when I is expressed in cm.? and p, in Angstrém units. The same numerical
value for y has been theoretically derived (WASASTJERNA 1932¢), but theapproximations
made were so crude that a direct comparison with HARTREE’s curves undoubtedly con-
stitutes a more reliable basis for determining y than the theoretical calculation. It
should be added that the numerical value of y is not actually very relevant, as only
the relative values of p are of interest in equations (2-7)—(2-14), so long as the functions
&, f1,Js are considered as unknown. That the values p in (2-13) may be replaced by the
values p, as calculated according to (2-18) can thus be checked by the condition (cf.
equations (2:7)—(2'9))

» Ri®)

P50+ pP = X0 (2-19)

where x, is a constant, which depends solely on C and g.

The arguments, which lead to formula (2-13), apply only to the range of x covered
by the ionic lattices. At great interatomic distances the potential energy arising from
the reciprocal action of the atoms becomes negative and corresponds to VAN DER
Waats’ force. As is well known (EisenscHITz and LoNDON 1930) the potential energy
of this attractive force has the form ¢{? = — fR~6 where £ is a constant. If we confine
ourselves to the rare gases we may write (LoNDON 1931) foc a?E;, where « is the
electric polarizability and E; the ionization energy. As «oc / and I oc p§ according to
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ON THE FORCES ACTING BETWEEN ATOMS 111

(2-18) we may write foc p§ E;. Further, in Table III it is shown that E; oc p5!. The
potential energy ¢{°” can thus be represented by a function

2
HO(R) = 52, (2:20)
R . .
where x = 2o 3o and where ¢, is a general constant which has the character
0 0 0

of a length. This constant is arbitrarily given the value 0-529 x 10~8 cm., which is
equal to the radius of the first Bour orbit for hydrogen. The quantities ¢ and g, are
introduced in order to give the expression the correct dimension. The factor 2 is
written in the denominator for other formal reasons (cf. formulae (2-21)—(2-22)).
Summarizing results, we may say that, according to (2:13) and (2-20), the forces
acting between two rare gas atoms can be expressed by a formula
0600 1 d¢, €2

iR —QPOW—Wf{(x), ¥ <x (2-21)

for small values of x and by a formula

gL  1.9dg, &2, X
TOR %y ox sz(x): x> %y (2-22)

for large values of x. Between these two ranges of x values there is a gap, where the form
of function ¢’ is unknown. Anticipating the results of the numerical calculations given
in the following sections we may state that both f; and f, pass through several orders
R,
2p,
thus very closely related to one another, both being chiefly dependent on x. By inter-
polation we can therefore undoubtedly fill up the gap with a function

of magnitude, when x = is increased in proportion 2/1. Functions ¢; and ¢, are

I o0 _ o S1(%) | fo(%) .

however artificial this function may be. As (2:21) must change continually into
(2-23) at the limit x = x;, and (2-23) must pass continually over into (2:22) at the
limit x = x,, we may conclude that function f/(x) in (2-23) completely predominates
at the limit x =x,, where f;(x) can be neglected as compared with f](x), while the
importance of f{(x) continually diminishes when x rises and gradually vanishes at the
limit x = x,, where formula (2-23) passes into (2:22). For small values of x, where
f+(x) can be neglected, the constant Ain @{°® (cf. (2-13)) is thus equal to the expression

(&) £ = (%) ot

@y
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112 J. A. WASASTJERNA

in the integrated formula
2 2
$0(R) = () + () ). (2:24)
2po o

Consequently, the potential energy of the forces acting between two rare gas atoms
can be expressed by (2-24) for all values of x.

For ions of rare gas type the constant f in equation ¢§*’ = — fR~® may be regarded
as unknown. Formula (2-24) is thus replaced by a formula

2

PO (R) = i (1) 0 (), (2:25)
where «*® depends on the ion-pair (i, £). From (2-13) we know, however, that
Jfo(x) gradually vanishes for small values of x.

It should be stressed that only function ¢(R) has physical significance, from which
it follows that no extrapolation of an asymptotic analytical expression f,(x) into the
range x<x; should be made. It is doubtful if it can be physically justified to take
VAN DER WaALS’ forces into account when calculating, for example, the compressi-
bilities of ionic crystals.

Some important circumstances should be discussed before we pass on to numerical
calculations. In deducing the ionic refractivities originally indicated by the present
author (WASASTJERNA 1922) it was as a first approximation assumed that the refrac-
tivities of salts can be calculated additively, without reference to the disturbances
resulting from the influence of the ions upon one another or upon the molecules of
the solvent. W. L. Bracc (1924), in an interesting paper on the effect of atomic
arrangement on refractive index, and Fajans, Joos and various collaborators (1924)
discuss the alteration in refractivity of an ion in the presence of other neighbouring
ions, from which it is evident that the refractivity / cannot be regarded as an absolute
ionic constant, but tends to a certain limit when the ions are dispersed. Fajans and
his collaborators have tried to estimate these disturbances. Certain objections may be
raised against every method by which the numerical values of the ionic refractivities
have hitherto been derived (FOwLER 1929). The most reliable values are probably
the means of the values recently given by Fajans (1934) as lower and upper limits.
These mean values are collected in Table I.

TaBLE I. ATOMIC AND IONIC REFRACTIVITIES (CM.3)

O— =171 F- = 24 Ne= 10 Na+t = 0-50 Mgt+ = 0-30
S— =230 Cl-= 90 A = 42 K+ =23 Catt =15
Se~~ =290 Br- =126 Kr= 64 Rb*+ =39 Sr++ =27
Te—— =409 I- =191 X =104 Cst =66 Batt =4-9

In accordance with formula (2:18) and Table I we arrive at the following values
(Table II) for the quantities p, (p, is expressed in cm.):
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ON THE FORCES ACTING BETWEEN ATOMS 113
TasLE II. VALUES OF p,x 108
O =091, F- =070, Ne = 0-56, Na+ = 0-47, Mg++ = 0-41,
S— =123, Cl- =097, A =0-80; K+ =069, Ca*+ =0-62,
Se~— =1:30, Br— =1-05, Kr = 0-89, Rb+ = 0-79, Sr++ =072,
Te— = 1-42, I- =117 X =101, Cs*+ = 0-90, Bat+ =0-83,

Table III shows that E; occ p5! for rare gases, a result which was anticipated in
deducing formula (2:20). ¥V denotes the ionization potential in volts, E; the corre-
sponding energy in ergs.

TasrLe I1II
v E; x 101 Po % 108 E;pyx 1019
Ne 23-5 374 0-562 2-10
A 155 246 0:805 - 1-98
Kr 139 2-21 0-894 1-98
X 12-2 1-94 1-010 1-96

3. THE FORCES BETWEEN ATOMS

(a) In homopolar lattices. LoNDON (1931) has shown that the vAN DER WAALS energy
of an assembly of atoms or centres is obtained by adding together the mutual potential
energies of every pair of atoms. According to (2-2) the function f;, on the contrary,
falls so rapidly with increasing x that only the nearest neighbours need be taken into
consideration when calculating lattice energies. The potential energy & of the lattice
is thus obtained by adding together the energies (2-24), the summation in regard to
/1 being extended only over the nearest neighbours, whereas in regard to f, it covers the
lattice as a whole. The distance between the nearest neighbours is, as before, denoted
by R, while the distance between a given atom and any other atom 7 in the lattice is
denoted by R,. The quotients x and x, correspond to R and R,.

The rare gases form face-centred cubic lattices with ¢ = 12. As further the vaN DER
WaaLs energy decreases with the inverse sixth power of R,, we write f,(x,) = —vx; 5,
where v is an unknown constant. The lattice energy is thus given by the formula

N 2 2 N 2 2
D=5 (05, )+ S5E e = 5 (05, ) —p R vee). (31)

6
%) = 14-45 arising through the summation

n

is obtained from the tables calculated by Jones and INGHAM (1925). The condition
of equilibrium #’(x,) = 0 leads to equations

where the value of the quantity p =E<

, 6pv p3?
Silw) = =22 48, (3-2)
) — g :
In(—f7(%,)) = const, +1n(a%x3). (3-3)

Vor. CCXXXVII. A. 15
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114 J. A. WASASTJERNA

From Table IV it appears that In(—f/(x)) is a linear function of x. Then it follows
that f/(x) can be represented by an exponential function exp(a--bx), where b =5-7,
and further, according to (3-2), that

1., 6pv_pg
xXy) = —3 1 (%) = 555 34
Siloeo) == fix0) = T (34)
TasBLE IV
R, x 108 Py x 108 g In(ph/asx3) 845 —5Tx
Ne 3-04 0-56 271 —69 —-170
A 3-84 0-80 2-40 —53 —52
Kr 4-20 0-89 2-36 —50 —50
X 4-60 1-01 2-28 —45 —45

If this value for f(x,) be entered in equation (3-1), we arrive at

_QS:NeEpfpo(l 6)' (3-5)

2.6 \'  hy
4a}x8 bx,

According to F. Born (1922) the heat of sublimation (—®) for argon is 1835 cal. or
7-68 x 1010 ergs. If, further, the values N = 6:06 x 1023, ¢ = 4-77 x 10710, g = 0-529 x
1078, po = 0-80 x 1078, x, = 2:40, p = 14-45 and b = 5'7 be entered in equation (3-5),
we obtain » = 0-18. Equation (3-4) and Table IV give

In fi(x) =In6pr—Ingb+8-45—5-Tx = 7-0—5-Tx, (3-6)
[fl(x) = 1100 exp(—5-7x),
| fo(x) = —0-18x76.

The simple calculations carried through in this section show how the general con-
siderations in § 2 enable us to deduce, from the fragmentary data concerning the
potential functions of the forces between individual atoms, general functions f; and
Jf2 common to all rare gas atoms, which make it possible to determine the course of
the potential function ¢(R) with a fair degree of accuracy. Within the interval
2:3<x<<2'7 the potential energy of the forces between two rare gas atoms can be
written (cf. (2-24))

2 2

S(R) — L{l 100 exp(—5-7x) —o-ls(@) x—ﬁ}. (3-9)
2p0 y

As the first term for x>2-7 falls extremely rapidly towards zero, the equation (3-9) is

probably applicable to all values x>2-3. On the contrary, whether an extrapolation

to values ¥<(2-3 is permissible or not must be carefully examined.

(b) In gases. According to the kinetic theory of gases (JEANs 1925) formula

$(R,) = kT (3:10)
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ON THE FORCES ACTING BETWEEN ATOMS 115

holds good. R, is the mean distance at the impact of the atoms, k is BOLTZMANN’S
constant and 7 the absolute temperature. From formulae (2-24) and (3-10) it follows
that .
_ 2p0kT
=%

2
Al (%) Satxo), (311)
where x, = (R,/p,). In this connexion the question concerning the interatomic distance
R, presented by the kinetic theory of gases requires further discussion. When, like
SuTHERLAND (1893) and CHAPMAN (1911, 1916, 1917), we take into account the
deviations from rectilinear trajectories, the atoms are regarded as incompressible
spheres, and the whole apparent displacement of the interatomic distance at the
moment of impact, occurring in connexion with a variation of temperature, is explained
as produced by such deviations. Since, however, R, is in reality a function of tempera-
ture, SUTHERLAND’S correction does not give us a correct interatomic distance, and the
atomic radius calculated according to SuTHERLAND has thus hardly any simple
physical significance. In view of this it is more correct, in calculating R,, to employ
the uncorrected value of R, according to the kinetic theory or the corresponding un-
corrected value, calculated by the help of measurements of viscosity. These points
were stressed by the writer (WASASTJERNA 1923) already in 1923; the R, values, given
in Table V, have since been used in several papers (WASASTJERNA 1923, 1932¢, d).
These values are, however, very uncertain, which makes any further calculations
unreliable. It must be clearly realized that the calculations based on these figures do
not prove the truth of any theory, but rather only indicate that theory and facts, as
far as we can judge at present, are not conflicting.

TaBLe V
Ryx 108 o x 108 %,
Ne 248 0-56 2.21
A 314 0-80 1-96
Kr 3-52 0-89 1-98
X 4-00 1-01 1-98

As the calculated values of x, for A, Kr and X are almost identical we deal with
these three gases as a single group and thus take into consideration the two points

Xg=221,  p,=056x10"8,
X=197,  py=090x10-5,

We enter the values £ = 1-371 X 1071 and 7" = 273 in formula (3-11) and assume as an
experiment that f,(x) can be represented by expression (3-8). From Table VI it
appears that the values for f)(x) calculated in this manner according to (3:11) agree
with formula (3-7), and that the expression (3-9) thus seems applicable also within
the range 2:0<x<<2-3.

15-2
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116 J. A. WASASTJERNA
TasLE VI |
20,kT Po\2 In f (%) In f,(x)
%y 2 - (z‘D Ja(¥) from 1(3-11) from1(3-7)
2-21 0-0018 0-0017 —5-65 —56
1-97 0-0030 0-0089 —4-4 —4-2

The interval under consideration, 2-0<<x<<2-7, is actually very large, as may be seen
from the fact that In f;(x) within this interval falls from —4-2 to —8-4. Fig. 1 illustrates
the course of the functions

20, 0 , 2 o
ln‘%ag ~1n| f, (x)+(§§) £, O (312)
125 1.50 1475 200 2..25 250 2_.75 3.00 :}25 350 375 4.00 X -
E ~
\
N
2 \
N
-3 \
-4
-5 \\
-6
-7 \
’ ‘ \ ~x
-9 §Kr
\ | \ “}ln 203
-10 [™Ne|
[ I

Fic. 1

The left branches of the curves correspond to repulsive, and the right hand ones to
attractive forces. For small values of x the curves approach each other asymptotically,
as f; gradually vanishes as compared with f{. The curves are parallel for large values of
x, as the VAN DER WaALSs forces differ from each other only in respect of multiplicative
constants.

4. THE FORCES BETWEEN IONS

(a) In bivalent lattices. The salts formed by the positive ions Mg, Ca, Sr, Ba and
the corresponding negative ions O, S, Se, Te crystallize in face-centred cubic lattices
(¢ = 6) with the exception of MgTe, which forms a lattice with ¢ = 4. The experi-
mentally determined interatomic distance R, (¢ =4) =2-76 for MgTe is therefore,
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ON THE FORCES ACTING BETWEEN ATOMS 117

according to GorpscHMIDT (1932), divided by 0-94, whereby a calculated inter-
atomic distance R, (¢ = 6) =2-94 is obtained in an imagined, face-centred lattice
comparable with the other salts. From Table VII it will be seen that x, takes
practically speaking the same value, 1:56 4 0-03, for all salts in question.

TaBLE VII
Salt Ry x 108 (0§ +p) x 108 %y (T =291°)
MgO 2:10 1-33 ) 1-58
MgS 2-60 1-65 1-58
MgSe 273 172 1-59
(MgTe) (294) 1-84 (1-60)
CaO 2:40 1:-54 1:56
CaS 2:84 1:85 1-54
CaSe 2-96 1-93 1:53
CaTe 317 2-04 1-55
SrO 2-58 1-64 1-57
SrS 3-01 . 195 1-54
SrSe 312 2:03 1-54
SrTe 3:33 2-14 1-56
BaO 2:97 1-76 1-57
BaS 319 - 2-07 1-54
BaSe 3-30 2-14 1-54
BaTe 3-50 2-26 1:55

For bivalent ions the values of p,, given in Table II, thus meet condition (2-19). From
this it follows that the derivative of the second term in formula (2-25), which should
disappear for small values of x, can be neglected for x = 1-56, and that formula (2-14) is
applicable for bivalent lattices. However, the condition of equilibrium @'(R;) = 0 is
strictly valid only at the absolute zero point. Taking into consideration the approxi-
mately known mean expansion of the salts, we lower the value 156 found at room
temperature to x, = 1-54 at the absolute zero point. The condition of equilibrium and
(2-14) give us for x, = 1-54

, _C ez 1'T5x2% ‘
fl(xo)——(ﬁ—%~—m———6x<l.54)z——049, .
(z)_l_p , ( )
PP | In(—ff (x0) = — 07,

On the other hand, for the same point x, = 1:54, we calculate according to (3-6)
In(—f{ (x))) =In 57+ 7-0— 57z, — —0-0,,

The expressions (3-7) and (3-8) previously found for f; and f, are thus no more
applicable for x<2-0. It is, however, meaningless to construct analytical expressions
for the functions f; and f, for the interval 1-5<<x<<2-0 as the necessary values for the

functions
| 08
o2 dx

are easily obtained by means of graphic interpolation.


http://rsta.royalsocietypublishing.org/

a
s \
A

ma \

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) ¢

A \

4
y

a
, §

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

118 J. A. WASASTJERNA

(b) In monovalent lattices. The salts formed by the positive ions Na, K, Rb, Cs and the
corresponding negative ions I, Cl, Br, I crystallize in face-centred cubic lattices, with
the exception of CsCl, CsBr and CsI which crystallize in space-centred lattices.
Table VIII gives the interatomic distances R, at the absolute zero point (estimated
according to data for densities and coefficients of expansion, given in LanporT-
BORNSTEIN’s Tables), the values of (p{ +p{¥), according to Table II, and finally the
quotients x, at the absolute zero point. Seeing that for univalent lattices x, is calcu-
lated by the aid of very certain data, the systematic scattering of the values of x, is
undoubtedly real and corresponds to the scattering of the curves

o+ py” 99

2 Ox
in the neighbourhood of x = 1-9 (cf. fig. 2). This interpretation is definitely supported
by the results of the calculations carried through in § 5. Yet, within the limits of
experimental errors, chlorides, bromides and iodides of the same metal obtain the
same value x,.

In

TaBLE VIII
Salt R, x 108 (P9 +pP) x 108 %,
NaF ) 2-298 1173 1-959
NaCl 2-789 1-447 1-927
NaBr 2-950 1-5632 1-926
Nal 3:190 1-649 1-935
KF 2-651 1:393 1-903
KCl 3113 1-667 1-867
KBr 3-261 1-752 1-861
KI 3-486 1-869 1-865
RbF 2-794 1-490 1-875
RbCl 3-258 1-764 1-847
RbBr 3:408 1-849 1-843
Rbl 3-628 1-966 1-845
CsF 2:975 1-601 1-858
CsCl 3-524 : 1-875 1-879
CsBr 3-674 1-960 1-874
CsI 3-901 2-:077 1-878

Formula (2-13) thus represents a fairly crude approximation for univalent lattices,
and in more exact calculations it must be replaced by formula (2:25). The potential
energy & of the lattice is obtained by the electrostatic energies and the functions
u, fo(x,) being added over the lattice as a whole, but f;(x,) only over the nearest
neighbours (cf. § 3a). We write

Z un‘fz(x n) e2
§= " -y (%) = i, (fi(®) +5f5(%)).
T 0 = e e () )
The potential energy of the lattice receives the form

2 C —Cp2
P = |~ HAE) +Su)| = Mo et we). @
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ON THE FORCES ACTING BETWEEN ATOMS 119

However, within the range under consideration the functions f;(x) and f,(x) are un-
known, as is also the case with the constants s. On the other hand, the functions

o 3%,

In|”?
T2

=In|fy(¥) + 9z (x)]

can be calculated according to formulae (3-7)—(3:8) for given values of s and x>2-0.
As further, according to § 4 a, all these functions independent of s, meet asymptotically
in the point

o+ 08 _

x=154, In 2 e

—0:7

a graphic interpolation is fairly plain. Fig. 2 illustrates the curves

o +-a4 99,

In
e? ox |’
140 150 leo 170 180 190 200 20 220 X >
0
- ln%—)l(i-,q=6,l=2.
-1
-2
lng—,f:, q=4,2=1.
——
~ P— l"%’xzaq=6,z=1.
-3 N l"%i" q=8,z 1.
S=0
S=1
S=2
» $=3
S=4
l ! o) lk)
> D J!
S5 ox
-5
\5-6 )
-6

Fic. 2
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120 J. A. WASASTJERNA

corresponding to the values s=0, 1, 2, ..., 6. The curves are drawn so that they
gradually join with the curves calculated according to (3-7)—(3-8) for x>2. The
condition of equilibrium is

, Ce? /
P (x0) = Ny ooy - 9000 = 0 )
(i) | p(k)
whence it follows that In |0 tp 99, = ln—qz. (4-4)
e 0% ey qx3
According to (4-4) the different values of x,(s, ¢) thus correspond to the points at which
i+ pf 3¢S

the curves In|?

C o
g cut the curves lnEx@. Within the range under con-

sideration the last-mentloned curves appear as straight lines. By drawing the curves

on a large scale, the values of xy(s, ¢), corresponding to different values of (s, ¢), will
be graphically obtained and from the slope of the curves we arrive at the values for

h .
the quantity P | (z)+p(k) 0¢s ¢”(x0)
(o) = (5;6 nl e Ox )x xo: ¢ (%0) 0

75
AN . \\ \
4 \ 65
\ix.), ;:(\&x.nq:& &ux.l,qﬁ N.uxu, 9=8
— 60

l .

, \\ s \ \
1 \ \ 50

ix,u.q:lo \
0 X 45 X

18 19 20 18 19 20

~—

Fic. 3 Fic. 4

Figs. 3 and 4 illustrate the connexion thus found between the quantities s, g, %o, #(%).
The curve u(x,), ¢ =4, which falls outside the diagram is of no interest, as corre-
sponding lattices do not exist. The curves obtained by graphic interpolation are
naturally to some extent uncertain. Particular exactitude is thus not claimed for the
numerical results, based on these curves.

TasLE IX
Salt Xy q s — (%)
NaF 1-959 6 04 46
NaCl, NaBr, Nal 1-929 6 1-3 4-9
KF 1-903 6 2-2 52
KCl, KBr, KI 1-864 6 3-6 5-9
RbF 1-875 6 32 57
RbCl, RbBr, RbI 1-845 6 44 6-3
CsF 1-858 6 3-8 6-0
CsCl, CsBr, GCsl 1-877 8 51 71
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ON THE FORCES ACTING BETWEEN ATOMS 121

5. SOME THEORETICAL CALCULATIONS OF THE PHYSICAL PROPERTIES OF
CERTAIN CRYSTALS

(a) The compressibilities of crystals. According to HILDEBRAND (1931) the energy E
of a crystal can be represented as the sum of a pure function of volume and a pure
function of temperature. Hence

oE ,
(W) 3VR ?'(Ro), (5:1)
2E ) ,
(573). = 57 (B39 (Ro)—2R, (Ry)), (52)
where V is the volume of a gram-molecule. The thermodynamic equation
0E P
(3v),~ =7+ 7(7), | (53)

gives for P =0

oE :aP (gg’) T (0V
(ov),~ (7),—~ T(@)P ~5lom), (54
aP),.
()=~ T, w1 G2l 69

where « is the coeflicient of compressibility, which as previously shown by the writer
(WASASTJERNA 1935 a) at least in the first approximation is only indirectly dependent
on temperature through the expansion caused by temperature. In equation (5-5)

we can thus write ((;?T) = 0. Formulae (5-1), (5-2), (5-4), (5-5) and (4-2) give us the

equations o
T(0V , " )
31 (57), = R (R) = 1#(30) = N[ (o por Honodilon) |, (59
W, T(V " " —2Ce?
+6 (HT) R%@ (R ) = xOQS xo Nl: (z)_l_p(k)) +qx0¢ ( )]' (5'7)
From these equations « is given by

) x ;,(x())__Q
9§ <,>+€,<k)>>x0 e ;(%} (58)
) " 3 P ’

NCe (xo &0 )-|-2) -

where V= 2NRj} for a cubic face-centred lattice and V— 3 R3 for a space—centred

373

lattice. For practical reasons we introduce the symbol

Ry (R,) EMED, _ '
How) == grtR 2= gy 2 Rkl =2

Vor. CCXXXVII. A. 16

(59)
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122 J. A. WASASTJERNA

as expression (5-9) very often occurs in this section. We arrive at the following
formulae for the two types of lattices 4 (NaCl) and B (CsCl):

__18R¢ 44T [0V i
e (425470 -
_(24/J3) Rg( P-4 T(ﬂ) )
o= BB 28T ) -
where Ry, ¢ and — 10 refer to temperature 7. As s (xo) is practically independent of
v yaT (%) ’
temperature, we obtain
1/0k\ 2 d+4 10V )
;(W)P‘ R AN S 1d) T(aV) V(?T)p' (5:12)
v\er

In order to calculate — 1 (Z_P) we make use of the identity

{8,208, 9,0 )2, AL IR oo

As already mentioned (%’%) = 0. Consequently
v

i(g;)yvumk(l_:i?h ?M;‘(W) ) (5:14)

The agreement between observed and calculated values (Table X) is very satis-
factory. The experimental investigations concerning g% and % are rather difficult,
and the observed values may therefore be impaired by considerable errors.

(b) The elastic constants. We confine ourselves to cubic face-centred lattices. The
number of independent elastic constants in crystals of this type is reduced to two. These
moduli are usually denoted by ¢, and ¢, (cf. e.g. Handbuch der Physik, 2nd ed., 24,
631 (1933)). For instance the compressibility is given in terms of ¢;; and ¢}, by

1
P 361+ 2¢15). (5:15)

At the absolute zero point ¢;; and ¢;, are given by (WASASTJERNA 1935¢)

S,
6y = 6R4 [a+3 5 |- - (516)

S 2
C1g = 4R€4 [S :|a (5'17)
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ON THE FORCES ACTING BETWEEN ATOMS 123

where S, and S are two constants, the values of which are §; = 1-747 and §] = 3-226.
From (5-15)—(5-17) we obtain

1 9/S
o159 ,_x_ﬁl):l 518
11 P I: ) (SO ] ( )
179/
=—|<sla—1)]. 5:19
=5l als )] (519)
TasrLE X
1[0k 1 0k
K x 102 barye? K (ﬁ)}) x 10t K <ﬁ’>g- x 10
S=-xp-2 1 <§Y x 105 Theor. Exp.} Theor. Exp.§,5 Theor. Exp.%
Salt (Ry x 108%)p* (Table IX) V\oeT/p (5-10), (5-11) (5-12) (5-14)

NaF 2-312 7-01 9-8 2-0 2-1 4 . 1 2
NaCl 2-812 7-45 10-0 4-2 4-3 4 7 2 2
NaBr 2-978 7-45 11-9 54 5.1 5 8 2 3
Nal 3-225 7-45 13-5 7-6 7-1 6 . 3 4
KF 2-669 7-90 10-0 3:2 33 4 1(?) 1 2
KCl 3-137 9-00 10-1 55 5-6 5 5 3 3
KBr 3-290 9-00 11-0 6-7 6-7 5 6 3 3
KI 3-522 9-:00 12-5 9-0 8-5 6 6 4 4
RbF 2-815 8-69 9-5 3-7 4-1 4 . 2 .
RbCl 3-284 9-62 9-85 6-2 6-6 5 8 3 .
RbBr 3-437 9-62 10-4 7-5 7-9 5 . 4 3
RbI 3-664 9-62 11-9 9-7 9-6 6 . 5 4
CsF 3-005 9-15 9-5 45 4-2 5 102) 2 3
GCsCl 3-562 11-33 13-65 59 59 7 9 3 3
CsBr 3714 11-33 13-9 7-0 7-1 7 9 4 4
CsI 3-946 11-33 14-6 9-0 8-6 7 7 5 5

* BorN and MAYER 1932. 1 HENGLEIN 1925, BAXTER and HAWKINS 1916.

1 BRIDGMAN 1032. § “International Critical Tables.”

The theory is, however, strictly valid only at the absolute zero point and formulae
(5:18) and (5-19) do not correctly account for the temperature variation of the elastic
moduli, as studied by Duranp (1936) and Rosk (1936). In Table XI the theoretical
values are calculated from (5-18), (5-19) and (5:10); the experimental values are
observed by BRIDGMAN (1929).

TasLE XI

¢ X 1011 dyn. cm.—2 619 % 101! dyn. cm. 2
Salt Theoretical Experimental Theoretical Experimental
NaCl 47 49 1-2 13
NaBr 37 3-3 0-9 1-3
KCl 39 37 0-8 0-8
KBr 3-2 33 0-6 0-6
KI 2-4 2.7 0-5 0-4

For NaCl Voicr (1910) has obtained the experimental value ¢;; = 4-7 x 101,
16-2
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124 J. A. WASASTJERNA

(¢) The proper frequencies of the vibrations in crystals. The proper frequency v, can
be calculated according to the formula (WASASTJERNA 1935 ¢, ¢)

S, 62 - 2my /1 1
2 _~07 Bl Y Paiul B .
o= 1272R3 (19 SO) (m1+m2)’ (5-20)

where m, and m, are the masses of the two ions. BARNES and CzERNY (1931) have shown
that in infra-red the position of the absorption maximum strictly coincides with the
proper frequency, provided that the crystal layers are sufficiently thin. Table XII
contains the proper wave lengths A, =¢/v,, calculated according to (5-20), as well as
the wave lengths for the absorption maxima for a number of alkali halides of the rock
salt type, observed by BARNES (1932).

TasLe XII
Salt A% 10% (calc.) A, x 10* (obs.) Salt A% 10% (calc.) A, x 10¢ (obs.)
NaF 40-4 406 KBr 865 883
NaCl 589 61-0 KI 102-0 1020
NaBr 725 747 RbCl 79-7 848
Nal 85-1 855 RbBr 109-4 114-0
KCl 67-9 70-7 RbI 133-7 129-5

(d) The amplitudes of the thermal vibrations. Tf u? is the mean of the squares of the
total displacements of an atom, we have for a crystal of the rock salt type

u2 = 3u2, (5-21)

nxd

where #2, is the mean of the squares of the displacements, in any arbitrary direction x,
of ions of the type n from their mean positions. For values of the temperature suffi-
ciently high we may write (WALLER 1925; WALLER and JAMES 1927)

If zero-point energy having PrLaNck’s value be assumed, «, is equal to zero. The

following mean value B
T,
T " Xm,

where m, is the mass of an atom of the type 7, can be calculated from the potential of
repulsion. The following formula is approximately true (WASASTJERNA 1935¢)

2
492+ 2419(§~ 1)~—90(§~ 1)

- kR} [22/(3712)} So So n 9mm, m,
= 328, | 7S, TS, S, )2 5 gg) ;
g1 || w -619<S0 1)‘45(&;«1) (my +my) (79“30

(5-23)

where £ is BoLTzMANN’s constant. Table XIII contains the values for § and J ﬁ,
calculated according to formula (5-23).
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ON THE FORCES ACTING BETWEEN ATOMS 125

The constant § can be determined experimentally by a quantitative study of the
reflexions of X-rays. WALLER and James (1927) thus find for NaCl g = 5-8 x 1021,
while James and BRINDLEY (1928) have obtained the value f = 7-2 x 102! for KCL

TasrLe XIII
Salt B x 102 Vi % 108 Salt B x 102 Vi x 108

NaF 311 0-165 KI 7.95 0-264
NaCl 514 0-212 RbF 408 0-189
NaBr 5-63 0-222 RbCl 6-32 0-236
Nal 674 0-243 RbBr 7-53 0-257
KF 406 0-188 RbI 9-00 - 0-281
KCl 6-06 0-231 CsF 452 0-199
KBr 678 0-244

All the values for § and N given in Table XIII are assuredly too low, this being
due to the deduction of formula (5:23) in certain respects being based on a theory,
which is strictly valid only at the absolute zero point. On the other hand, the relative
values for different salts are probably very nearly correct. By the aid of an experi-
mental value for u2, e.g. for NaCl, we can thus, in accordance with Table XIII,
calculate v22 for the remainder of the salts in question. This table is therefore of a
certain interest as regards the quantitative X-ray study of alkali halides.

(¢) The energy of a crystal. According to (4-2) the potential energy of the lattice is
given by

- A
where R = a5 6 ) — s fi () + 5()). (525)

The numerical values of (5-25) can be calculated from (3-7) and (8-8) for x =a = 2.
For x,< 2 upper and lower limits can be calculated as follows: Within the range under

. . . ,o‘“—l—p"“’ ad, | .. . .
consideration, (x,, a), function In | =2 3 xs lies between two straight lines drawn

through the point

(z)_l_ (%)
X0s ln £o ,00 ¢s(x0)

with the derivatives x(a) and g(x,). Hence

— S expi(a—ro) ml@)} =1 | <) —4,(0)< S [exptiae s mimy-1].

/‘s(xo)
(5-26)
From the condition of equilibrium (4-3) it follows that (5-26) can be written

[exp{a xo) ts(a)}— l:|<02|:¢s(x0 — ¢, a):l
xo)[eXp{(a o) ts(%0) } — ], (5-27)

xOlus(

xO lus
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where ¢, (a) and g (a) can be calculated according to (5-25) and (3-7), (3-8), and
where x, and g,(x,) are obtained from figs. 3, 4. Necessary data for univalent lattices
are collocated in Table XIV. For bivalent lattices a corresponding calculation is of
less interest, as the s values for these salts are unknown. We can only state that for
bivalent face-centred lattices x, ~ 1-54, u(x,) ~ 4-0. We propose to assume s<6,
from which it follows that

R
T3 6.(x) = 012003, (5-28)
TaBLE XIV
R,
%(s) () C2 P50

s (g=6) (g=8) (g=16) (g=38) (g=16) (g=38)

0 1-973 — 4-5 — 0-096 + 0-000 —

1 1-939 — 4-8 — 0-091 + 0-001 —

2 1-908 — 52 — 0-082 + 0-001 —

3 1-880 — 5-6 — 0-070 + 0-002 —

4 1-854 1-910 61 64 0-057 + 0-003 0-045 + 0-003
5 1-830 1-880 67 7.0 0-041 + 0-005 0-027 + 0-003
6 1-808 1-852 74 77 0-022 ¥ 0-007 0-005 + 0-005

The energy E of a crystal at the absolute zero point is ‘
E =&+ NXlhy, (5-29)

where the second term represents the zero-point energy. Table XV shows the data
available. The experimental values are very uncertain and the estimated limits of
experimental errors are probably narrow rather than wide.

TaprLe XV
R R
L29.(x) L28.%0)
—E NXthv (ergs) s (ergs)

Salt (calories)*  (calories) T exp. value (Table IX) q (From Table XIV)
NaCl 181 +56 1-7 0-11 4 0-03 1-3 6 0-09 +0-00
KI 154 +5 1-0 0-06 +0-03 3-6 6 0-06 + 0-00
RbBr 151+5 0-9 0-10 £ 0-03 4-4 6 0-05 4 0-01
CsI 141 +5 0-7 0-04 1+ 0-03 5-1 8 0-025 +0-01

* MAYER 1930; HELMHOLZ and MAYER 1934.
1t MavEeR and HELMHOLZ 1932.

6. THE STRUCTURE OF THE LATTICE AND THE DEPENDENCE OF INTERATOMIC
DISTANCE ON THE NUMBER OF GEOMETRICALLY EQUIVALENT NEAREST NEIGHBOURS

We consider function ¢, as independent of ¢. This will of course mean a certain

approximation.
A lattice with index 1 is then more stable than a lattice with index 2 provided that
c () 1 (k) C () |y
R e ) (6:1)
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As In (— ¢{(x)) within the interval under consideration (%01 ¥o2) can be replaced by a
straight line, the formula

Ps(%01) = P(%02) + ,u (¢s(x01) 5(%02)) (6-2)
is valid. By the aid of the condition of equilibrium we calculate
(i) | ple) C
B"“;‘z‘p P(%) =T (63)
Koy = X, (l—k—l-—lnqlcz)fvx (1 +=—In q‘) » (6-4)
01 02 19S qs Cl 02 19 |
where, as before, = — (% 4 +2). (6-5)

According to (6:1)—(6-5) a lattice with the co-ordination number ¢, is more stable than
a lattice with the co-ordination number ¢, if

. R
cither 4>y, ‘(2 (5) <Qu 07 1<, 65’2Z2¢s<x02>>czs, (6:6)
where
G
Q 92 G,

1 1
= 1— —f(1———\!.
71—4 1., @ ( ( 91)) ( 92 )
1++Infd ?,+2) (1 In d,+2
T\ ) Jﬂ*} 7 gt
If g, = 6 and alternatively ¢, =8, ¢; = 4 be entered in (6-6), @, obtains the following
values (Table XVI) for univalent lattices:

TaBLE XVI

=8, C,=17626 q,=4,C =16385
5 Qs{q2 =6, C,=1-7476 s{q2 =6, C, = 17476
0 0-041 0-143
1 0-040 0-145
2 0-039 0148
3 0-038 0-152
4 0-037 0-156
5 0-036 0-160
6 0-035 0-165

A comparison between Tables XIV and XVI shows that the alkali halides cannot
crystallize with the co-ordination number 4, as for all values of s a structure with ¢ = 6 is
more stable than a structure with ¢ =4. A face-centred lattice (¢ = 6) is also more
stable than a space-centred lattice (¢ = 8) for small values of s, while a transition to a
space-centred lattice occurs when s passes a value situated between 5 and 5-5. From
Table IX it appears that only the salts CsCl, CsBr, CsI show s values sufficiently high
to enable them possibly to form space-centred lattices. According to the theory these
salts lie quite on the border between the two lattice types and are followed in respect of
high s values by RbCl, RbBr, RbI. As is known, CsCl, CsBr and CsI crystallize in
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space-centred lattices, but on being heated pass into face-centred lattices (WAGNER
and LipperT 19364, b), while RbCl, RbBr and Rbl form face-centred lattices which,
however, are transformed under sufficient pressure (BRiDeGMAN 1928). In agreement
with the theory, the other alkali halides form only face-centred lattices. The lattice
structures observed thus confirm that the value of s passes the number 5 between RbCl
and CsCl in Table IX.

GorpscHMIDT (1932) has found experimentally that the interatomic distance
increases by 3 per cent at the transition from a face-centred structure to a space-
centred one. According to our theory such a transition happens for s~ 5, x,~ 1-83,
U~ 67, 3~ 10. Formula (6-4) gives with ¢, =8, ¢, =6, ¥, =10

xOl = ]. ¢ 029%02,

in good agreement with GoLDSCHMIDT’s rule.

For bivalent lattices with ¢, = — (g, x,+2) ~4, Q, (¢, = 8) takes the value 0-05 and
Q, (g, = 4) the value 0-12. According to (5-28) and (6-6) a lattice with ¢ = 8 is thus
completely excluded in respect of the bivalent salts, whereas lattices with ¢ =4 and
g =6 are possible, as these salts lie near the border of the two lattice types. The
bivalent salts crystallize in face-centred lattices, with the exception of MgTe, which
forms a lattice with ¢ = 4. However, the constant s is certainly higher for MgTe than
for MgO, which, like other bivalent salts, forms a face-centred lattice. In accordance
with the theory also MgTe ought therefore to crystallize with the co-ordination
number ¢= 6. The incorrectness of this conclusion shows that the postulates of the
theory are not fulfilled in respect of MgTe. It can easily be seen that this really is the
case. For MgTe in a face-centred lattice, the negative ions would penetrate each other
if we attribute to them the radii indicated by GorpscumipT. In such a case it is
obvious that our basic postulate—according to which only the repulsion between
nearest neighbours with opposite electric charges need be taken into consideration
when calculating the potential energy of the lattice—will not hold good. Conse-
quently, in some extreme cases certain atomic configurations can be excluded as
energetically impossible on account of the relative size of the atoms or ions. This
point of view was first put forward by MaceNuUs (1922) in connexion with the question
of complex chemical compounds and has later been successfully applied by Gorp-
scHMIDT in the case of crystal lattices.

7. THEORETICAL INTERPRETATION OF EMPIRICAL RESULTS

The general form of ¢%(R) for small values of x is rather interesting. According to
(2-24) ¢°(R) may be represented by a function

07(R) = () +(2) £) (1)

where the relative importance of f, gradually diminishes when x decreases.
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The reciprocal action of the outermost shells of two rare gas atoms has been
investigated theoretically by GrRONBLOM (1935). That the inner electrons play no
important role in problems of this nature is well known and has been pointed out, i.e.
by BLEick and’ MAYER (1934). We denote the nuclei by a and 4, and the outermost
electrons of aand b by 1, ..., 8 and 1, ..., 8’ respectively. We further denote the charac-
teristic functions for 1, ..., 8 and 1, ..., 8" by ¢, and ¢, respectively. The characteristic
function for the two atoms regarded as one system will then be expressed as follows:

where o= Ya(1) ¥a(2) .. ¥a(8) ¥, (1) #4(2') ... #,(8")-

P* and P- respectively signifies the permutation of the electrons with positive or
negative spin. C,,=+1, and is to be chosen so that ¥ is antisymmetrical in
respect of all electrons. However, it appears, as also pointed out by BrLEick and
MAYER, that only those permutations are of importance to the final result, by which
one electron from a is permuted with one electron from 4. In this the possibility of
dealing with the problem approximately as an H, problem is included. For the
disturbance energy one arrives at the expression (GRONBLOM 1935)

00R) = 2[( ) ) V(2R

8% [ [0 ¥u(2) 9, 1) w 2) VL,
([ B AL g

12

(7-2)

e[ ) a0 42 9 0) o (2) R

The writer has shown (WASASTJERNA 19325) that the electron distribution for the
outermost shell of atoms and ions of rare gas type can be approximately expressed by
the general formula

D) =5 BE) =, 3 (3)*exp(—58), (73)

1

. Po

r . . :

where £ = o r being the distance from the centre of the atom. For each of the eight
0

outermost electrons of both atoms GRONBLOM chooses a characteristic function

1/f=N,rexp{—25—/:)},

which corresponds to the electron distribution (7-3). From (7:2) he then obtains a
potential energy, which can be written

2 2
PO(R) = o (Aot + A, 20+ ...+ Agr~") exp(—10x) = o (1), (7-4)
20, Po

Vor. CCXXXVIL A. ’ 17
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R .
where 4, ..., Ag are constants and where x = é/; . A few terms of no importance at the
0

intervals which come into question have been left out. Expression (7-4) meets con-
dition (7-1). As an experiment we propose to assume that the first term in the
polynomial appearing in (7-4) predominates. This assumption leads to the suggestive
formula

fx) e | B), (7:5)

J1(%)
Ji(x)
according to § 4a, the second term in (7-1) can be neglected. The corresponding
experimental value (figs. 1, 2) is p(x) = —4.

On the other hand, for large distances R, (7-1) gives

which gives the approximate theoretical value x =

= —4+7 for x = 1-5, where,

$0(R) = 520 () (7-6)
T 2a2VR
where, according to (3-8), Ja(x) = —0-18x76,

According to LoNpoN the vAN DER WaALS energy is given by
$O(R) = —§o2E; RS, (7-7)

where o = I=10%p§ (according to 2:18) and E;p,=2x 107! (according to

24
4N’
Table III). Formula (7-7) can thus be expressed by (7-6), where
Sa(x) = —0-09x76,

The experimental values of the vaN DER WaaLs forces for rare gas atoms are thus

exactly twice as large as the theoretical ones.
ADDENDUM
. . Nw .
For crystal lattices the vAN DER WAALs energy can be written —R6> where w is
a constant which can be calculated from experiments by formula (cf. 4-2)
w ¢?
TRy o S2 (%)

In Table XVII the experimental values w are compared with values theoretically
calculated by J. E. MAYER (1933).
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TasrLe XVII
Salt wexp X 1062 Wtheor X 1062 Salt wexp X 1062 Wiheor X 1062
NaF 0-2 0-5 RbF 5-8 2-8
NaCl 2-0 1-8 RbCl 17-4 6-9
NaBr 2-7 2- RbBr 22-1 9-0
Nal 39 4-8 RbI 30-0 13-3
KF 2.8 17 CsF 9-8 49
KCl 11-4 4-5 CsCl 29-0 15-3
KBr 14-6 6-0 CsBr 36-3 20-7
KI 20-2 9-2 Csl 48-4 29-7

The experimental values for Na-salts are rather uncertain, as they depend to a con-
siderable extent on how the graphical interpolation is done (§ 4 4). For other salts
the experimental values of the vaN bER WAALS energies are again about twice as large
as the theoretical ones, and there is thus a rather serious discrepancy to be faced.

I wish to acknowledge my indebtedness to Professor W. L. Braca, Professor J. E.
LennarD-JoNEs and especially to Professor D. R. HARTREE for much valuable criticism
and advice. I also wish to tender my thanks for a grant from the Research Fund
given by Mr and Mrs R. GeseLLius, Helsingfors.

8. SUMMARY

A method is developed according to which it is possible to analyse, by the aid of
accessible experimental data, the question of the dependence of the potential energy
on the interatomic distance for atoms and ions with closed shells. The results of the
analysis have been made the foundation for a theoretical calculation of a number of
physical properties of crystals. In many instances the results of the calculations can
be compared with experimental data. In other instances information is obtained
concerning data, which have previously been entirely unknown or about which great
uncertainty has prevailed. Finally, a theoretical interpretation is given to the empirical
results.
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